Full-Time Supervision based Bidirectional RNN for Factoid Question Answering

نویسندگان

  • Dong Xu
  • Wu-Jun Li
چکیده

Recently, bidirectional recurrent neural network (BRNN) has been widely used for question answering (QA) tasks with promising performance. However, most existing BRNN models extract the information of questions and answers by directly using a pooling operation to generate the representation for loss or similarity calculation. Hence, these existing models don’t put supervision (loss or similarity calculation) at every time step, which will lose some useful information. In this paper, we propose a novel BRNN model called full-time supervision based BRNN (FTS-BRNN), which can put supervision at every time step. Experiments on the factoid QA task show that our FTS-BRNN can outperform other baselines to achieve the state-of-the-art accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارایه یک پیکره‌ پرسش و پاسخ مذهبی در زبان فارسی

Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...

متن کامل

A Neural Network for Factoid Question Answering over Paragraphs

Text classification methods for tasks like factoid question answering typically use manually defined string matching rules or bag of words representations. These methods are ineffective when question text contains very few individual words (e.g., named entities) that are indicative of the answer. We introduce a recursive neural network (rnn) model that can reason over such input by modeling tex...

متن کامل

Boosting Passage Retrieval through Reuse in Question Answering

Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...

متن کامل

A Machine Learning Approach for Factoid Question Answering

This paper presents a factoid Question Answering system that is fully based on machine learning. Our system achieves similar results to a state-of-theart QA system with answer extraction rules developed by a human expert. Our approach avoids human intervention and simplifies adaptation of the system to new environments or extended feature sets. Moreover, its response time is suitable for places...

متن کامل

Full Machine Translation for Factoid Question Answering

In this paper we present an SMT-based approach to Question Answering (QA). QA is the task of extracting exact answers in response to natural language questions. In our approach, the answer is a translation of the question obtained with an SMT system. We use the n-best translations of a given question to find similar sentences in the document collection that contain the real answer. Although it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.05854  شماره 

صفحات  -

تاریخ انتشار 2016